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Abstract: In this work we revisit the problem of the stability of circumbinary planetary orbits. We perform numerical integrations of more than 3 108 circumbinary systems over 10¢ planetary orbital periods. We consider, for
the first time, non-zero initial planetary eccentricities up to 0.9. Moreover, our investigation covers a wide range of masses for both the binary and the planet and orbital mutual inclinations ranging from 0 to 180 degrees. The
results of the numerical integrations provide us with two critical borders: an outer border beyond which all planetary orbits are stable and an inner border closer to the binary below which all planetary orbits are unstable. In
between the two borders, a mixture of stable and unstable planetary orbits is observed. We provide empirical expressions in the form of easy to use fits for these two critical borders. Application of our results to real

circumbinary systems is also presented.
1. Introduction

The problem of determining stable orbit configurations within the three body problem is one of the classical problems in Celestial Mechanics.
Several exoplanets have been discovered in circumbinary configurations, i.e. the planet orbits the center of mass of the stellar binary. An important
aspect of ruling out false positives in the quest for exoplanets is the assessment of whether a predicted orbital configuration is dynamically stable.
In this work, we revisit the problem of the stablility of circumbinary orbits and we remedy any limitations and inconsistencies that arose in previous

studies.
2. Methodology

We carry out numerical simulations of a planet around a stellar binary using a symplectic integrator (Mikkola 1997). The parameter space Is

sampled as follows:
M,e {0.5, 0.3, 0.1, 0.05, 0.02, 0.01}, M e {104 103, 10, 10, 10°, 107},

I € {0°, 18°, 36°, 54°, 72°, 90°, 108, 126°, 144, 162°, 180°%}, e,, e,€ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9},
Q, w, @ € {0°,90°, 180°}, f, € {0°, 180}, f, € {0°, 45°, 90°, 135°, 180°, 225¢, 270°, 3159}, @,=0°

where M,=m,/ (m,+m,), M,=m_/ (m;+m,) (m, and m, are the stellar masses and m, the mass of the planet). /  is the mutual inclination, e is the
eccentricity, Q the longitude of the ascending node, w the argument of pericenter, @ the longitude of pericenter, f the true anomaly. The indices b
and p refer to the binary and the planet respectively. The integration time was set to 10° planetary orbital periods.

A system Is classified as unstable if at least one of the following happens: a) any of the eccentricities >1 b) orbit crossing occurs c) a,/a,, < 1 d)
a,/a,, 2 100 e) a /a,, = 1000, where a, and a, are the two semi-major axes of the system. We define two critical semi-major axes: 1) the outer one,

above which the planet is stable for all initial positions and iil the inner one! below which the ilanet IS unstable for all initial positions.

Empirical fits (ep < 0.8)

ai” = m ay (0.20 — 0.33M;;, + 0.101[,,, + 0.58¢;, + 0.37¢e, — 0.26 M, — 0.06009 0.38e; + 1.02e; + 0.27M;,ep, + 0.39 My,e, — 0.20 e, — 0.25Mef —
0.30M;,e5+0.09 I,,ef — 0.06Mj})

al” = m ap (0.24 — 0.29M,, + 0.231,,, + 1.07¢, + 0.62e, — 0.22M};, — 0BG, — 1.53e; — 0.47e; — 0.311,,e, — 0.01 e, + 0.11 I5,e, — 0.04M};, —
0.01/;,+0.88 ej + 1.26¢5)
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Mean and standard deviation of outer vs inner stability borders in units of log,; of the binary semi-major axis. The s . . . . . AT . .
Critical semi-major axis ratio against mutual inclination for a variety of systems. The red color refers to the inner

color scale refers to the binary orbit eccentricity (top left), the planet’s orbital eccentricity (top right), the binary mass ratio 06 0E boundary, while the green colour denotes the outer stability border. The continuous lines are our empirical fits
(bottom left), and the mutual inclination (bottom right). Stability limits depend strongly on the planetary orbital eccentricity

which accounts for most of the variance in the system. Stability borders also show roughly the same sensitivity to the binary
star orbital eccentricity, the binary mass ratio as well as the inclination of the system.
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Additionally: 10| Geo ——
- We provide fits for ep < 0.9 s A |
- We train a Machine Learning model NI Geo = this work
- We compare our empirical formulae against randomly T N O T ﬁc\j\?lz_: (ﬂfr:girge\t,v?gg(ezngggg
generated circumbinary systems | - _
- We use our fits to characterize known circumbinary systems 0l
- We provide an online tool for stability limits prediction 5 |
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