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Introduction

Radial Velocity Method for Exoplanet Detection:
❖ Measuring Periodic Doppler shift in the parent star’s 

spectrum.
❖ Current precision constrained by Stellar jitter of parent star
❖ Stellar Jitter: main source of RV noise below 1ms-1

❖ Stellar jitter characterization and removal : key to measure 
“Extreme Precision Radial Velocities” (EPRVs) accurately.
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❖ Traditional methods like FF’ and GPs : empirical in nature.
❖ Machine learning : can potentially utilize all spectral data.

 
Radial Velocity method : Detection threshold evolution1

OBJECTIVES

❖ To disentangle Keplerian planetary 
RV signal from solar jitter, for NEID 
solar data, using Machine 
Learning

❖ To extract synthetic Keplerian RV 
signal with semi-amplitude < 1ms-1

❖ To apply this technique for 
extraction of Keplerian orbital 
parameters like period, amplitude, 
eccentricity etc.

❖ To extrapolate this technique for 
application on stellar spectra.
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Prediction accuracies for different models

❖ Predicted period P and semi-amplitude K 
as Keplerian orbital parameters 

❖ Vision Transformer : implemented to deal 
with aperiodicity in observations

❖ P accuracy : 83%, K accuracy : 73% for 
their respective 10 and 5 class 
classifications.

❖ Performance Trend: P prediction 
accuracy of Keplerian signal increases with 
increasing semi-amplitude K

❖ High confidence P predictions have a high 
accuracy(~94%) for K 𝜖 64-94 cms-1

❖ Comparison: Crude comparison hints at 
model outperformance over 
Periodogram(K < 1ms-1)

SUMMARY OF RESULTS 

Testing the model 
❖ K predictions for images with no Keplerian signal(K=0).
❖ The overwhelming majority of images were mapped to 

the lowest possible K classification value.
❖ Conclusion: Machine is indeed disentangling 

Keplerian signal from solar RV noise!!!

High confidence P predictions for selected K range

Model correctly predicts orbital periods with high confidence(>90%) 
for a significant fraction(73%) of selected data with K 𝜖 64-94 cms-1!!!

NEID spectrograph solar feed data:
❖ High precision RV measurements : 

precision well below 1ms-1

❖ 380-930 nm high resolution(~117000) 
spectral data(Dec ‘20 - Jun ‘22).

❖ A Cross Correlation Function(CCF) 
generation pipeline converts spectral data 
to a CCF : weighted sum of spectral lines.

❖ A single spectrum is converted to 10 
CCFs based on line depth of averaged 
spectral lines: appended to form a CCF 
vector.

❖ An Image generation pipeline converts 
multiple such randomly selected CCF 
vectors into an image: time dependent 
Keplerian Doppler shift inserted in every 
CCF vector.

❖ These images: Used for all further 
analysis.

DATA

The Keplerian signals are sampled for one-planet-Sun systems, with period P, and semi-amplitude K:
❖ Input log(P) and K values : mapped to 10 and 5 uniform bins respectively.
❖ P sampling : log-uniform distribution with 12-365 day range
❖ K sampling : uniform distribution with 0.05-3 ms-1 range
❖ Output : probability arrays of length 10 and 5 for P and K respectively.
❖ Standard ML models : not designed to handle aperiodically sampled data.
❖ Vision Transformers : allow the variable observation times of our data to be encoded.

CONCLUSIONS

❖ ViT: Successfully disentangles RV signal 
from solar jitter, and accurately predicts 
period P and semi-amplitude K

❖ Crude comparison: ML model 
significantly outperforms periodogram 
P predictions in low K regime

❖ Using multiple CCFs enhances P 
prediction accuracy by ~5%

FUTURE SCOPE
❖ Expansion of current dataset from 19 

months to add more recent data.
❖ Adding data that includes correlation, 

like the quasi-periodic jitter associated 
with solar rotation.

❖ Independently representing spectral lines 
known to trace stellar activity in the CCF 
vector.

❖ Train a model to distinguish genuine 
planetary shift from RV activity 
masquerading as planetary signal.

❖ Potential model testing on G-type stars.
❖ Apply this technique on other stars.
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Rudimentary comparison 
with Periodogram hints at 
possible outperformance 

at low semi-amplitude 
values!!!
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