

1×solar

Quenching-driven equatorial depletion and limb asymmetries in WASP-96b's atmosphere

Maria Zamyatina^{1*}, Duncan A. Christie^{1,2}, Eric Hébrard¹, Nathan J. Mayne¹, Michael Radica³, Jake Taylor^{3,4}, Harry Baskett¹, Ben Moore¹, Craig Lils¹, Denis E. Sergeev¹, Eva-Maria Ahrer², James Manners⁵, Krisztian Kohary¹, Adina D. Feinstein⁶

* m.zamyatina@exeter.ac.uk

What is quenching?

• Transport-induced <u>quenching</u> is a process that determines the boundary between the part of the atmosphere at chemical equilibrium and the part of the atmosphere at thermochemical disequilibrium. The location of this boundary, the quench level, depends on the dynamical and chemical timescales in the atmosphere, with quenching occurring when these timescales are equal.

What does our GCM predict? Quenching causes CH_4 equatorial depletion at $10 \times solar$.

WASP-96b mid-transit view from simulations with disequilibrium thermochemistry

1. Met Office Unified Model 3D GCM setup:

- full, non-hydrostatic equations of motion;
- correlated-k + equivalent extinction radiative transfer

(incl. H_2O , CO, CO_2 , CH_4 , NH_3 , HCN, Li, Na, K, Rb, Cs, H_2 - H_2 CIA, H_2 -He CIA; H_2 and He scattering);

- Venot+2019 C-H-O-N reduced chemical network;
- weaker dissipation;
- no photodissociation, no aerosols;
- 2.5° longitude by 2° latitude and 66 vertical levels equally spaced in height (from $\sim 2 \times 10^7$ to ~ 1 Pa);
- **2.** Experiments:
- $-1 \times$ and $10 \times$ solar metallicity;
 - equilibrium and **disequilibrium thermochemistry**.
- 3. Temperature increase at ~10⁴-10⁷ Pa caused by a higher assumed atmospheric metallicity (left column), shifts the quench levels to lower pressures, closer to the region of equatorial jet (middle column), and causes an equatorial depletion of CH₄ (bottom right), NH₃ and HCN.

- 4. The \sim 3-5 μ m region is the most powerful region for distinguishing atmospheres at chemical equilibrium from those with upper layers at thermochemical disequilibrium, and uniquely identifying their metallicity.
- 5. In that region the shape of transmission spectra (incl. evening-morning limb asymmetries) is different between our $1 \times$ and $10 \times$ solar simulations with equilibrium and disequilibrium thermochemistry due to the **difference in H₂O abundance and quenching behaviour of CO₂ and CH₄**.

