Orbital Architectures of Triple-star Systems that Host Transiting Planets

Elise Evans ${ }^{1}$, Trent Dupuy ${ }^{1}$, Kendall Sullivan ${ }^{2}$, Adam Kraus ${ }^{3}$, Daniel Huber ${ }^{4}$
\%

Abstract

Multiple star systems provide unique opportunities to study the environments in which planets would have formed. This is under the conservative assumption that planets form after stars, and therefore the stellar orbits that sculpted the protoplanetary environment are the same orbits observed today. We present an analysis of a novel sample of triple-star systems that host Kepler planets. Using long-term Keck adaptive optics monitoring, we have measured astrometric orbit arcs in 21 triple systems, including 12 newly identified triples from a homogeneous analysis of our Keck data and Gaia astrometry. While previous work has largely focused on planet-hosting binaries that have two orbital planes to consider (planetary and stellar), triples have an additional stellar orbital plane. We examine the alignment within the nine most compact systems (separations $\sim 5-500$ au), testing if either (or both) of the stellar orbits align with the edge-on orbits of their transiting planets. Our first-ever statistical sample of orbits in triple systems that harbour planets demonstrates, intriguingly, that the observed trend of stellar-planetary sample of orbits in triple systems that harbour planets demonstrates, intiguingly, that the
orbit-orbit alignment in binaries does not appear to extend to higher-order stellar systems.

The
 Compact Sample

Multiple epochs of imaging and aperture masking of the 9 most compact triples allows the separation and position angle of the stellar companions to be measured over time.

3. Comparing to binaries

The histogram for the γ values (left) shows the average over 10^{4} Monte-Carlo trials with the shading corresponding to the fraction of trials resulting in that value for each bin. Dupuy (2022) looked at 45 binaries (right) and found an overabundance of low γ
values consistent with a majority of edge-on orbits, which is not seen in the triples.

4. Comparing to simulated distributions

Simulating synthetic orbits allows the γ distribution of the triples (dashed) to be compared to
expected distributions of random orbits solid). The colour of each test corresponds to the expected distributions of random orbits s solid). The ocolour of each test corresponds to the p-
value of a K-s test. Each row is a unifitm eccentricty distribution and value of a K-S test. Each row is a uniform eccentricity distribution, and each column corresponds to a star-planet mutual inclination distribution of either isoctropic or $0<\phi<\phi_{\text {max }}$.

5. Full Orbital Analysis

Astrometry and proper motion allows the orbital characterisation of the inner binary (left, using ORVARA) and the outer companion relative to the barycentre (right, using LOFTI_GA(A), which provides better inclination constraints as it incorporates stellar mass information.

6. Mutual Inclination

$\cos i_{\star-P}=\cos i_{\star} \cos i_{P}+\sin i_{\star} \sin i_{P} \cos \left(\Omega_{\star}-\Omega_{P}\right)$ $\cos i_{\star-P}=\sin \left(90-i_{\star}\right) \cos \left(\Omega_{\star}-\Omega_{P}\right)$
Equation 1 describes the mutual inclination between two orbital planes (stellar and planetary). Transiting planets have an inclination of $i_{p} \sim 90^{\circ}$, simplifying the equation. As the longitude of the ascending node (Ω) for the planet is unknown, $90-i_{i}$ can be used as a measure
the minimum misalignment. For a
random distribution of orbits, a flat random distribution of orbits, a flat
$\sin \left(90-i_{x}\right)$ distribution is expected, $\sin \left(90-i_{t}\right)$ distribution is expected
however the resulting histogram (right) shows a surplus of low values, implying there is some star-plan
alignment in these systems. alignment in these systems.

7. Conclusions and Future work

The observed distribution of γ for the triples is unlikely to be produced from random orbits with an isotropic viewing angle. Like the binaries, this means that the planets are likely to be influenced by more than one of the stars in the system. With such a small sample, we are unable to say with any statistical certainty whether triple systems are more likely to be aligned (as was the case with the binaries) or misaligned, from the γ angle alone. Full orbital analysis does however show that there is an overabundance of systems with a low mutual inclination between the stellar and planetary orbit. Future work will look at an increased sample size of ~ 100
binaries which should sive a better comparison tetweenthe two demogan binaries which should give a better comparison between the two demographics.

