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atmospheric dynamics to an unprecedented level of precision[4]. Doppler
effects from winds and rotation will broaden and shift the lines (below).

le—-9

5. Preliminary Conclusions and Future Steps
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We have explored the effects of our active drag prescription for three different UHJs. Our initial conclusions are:

-all three UHJs modeled showed the emergence of the magnetic circulation regime

-In high-resolution emission spectra, we have identified trends in net Doppler shifts near secondary eclipse that could indicate
the presence of this magnetic circulation regime for two different species: CO and H,0

-In high-resolution transmission spectra, we found that models with magnetic drag show a distinct shape in their Doppler shift

telling us the velocity . . . .
as a function of orbital phase curves that differs from the drag-free models, particularly for the CO band.
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