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1 Introduction

The current census of exoplanets has been almost entirely built upon
transit and radial velocity detection methods. While astrometric
exoplanet detection has been almost anecdotal so far due to
the ultra-high (µas) precision required for this detection technique,

the arrival of ESA’s Gaia mission has radically changed
the picture, paving the road for astrometric exoplanet
detection at large and over the full-sky. Our project
(ExoAID) aims to improve the current statistics and
sky-coverage on detected exoplanets by application of
machine learning and Artifical intelligence techniques to
the Gaia catalog.

2 Methodology

We simulate the epoch astrometry (αi, δi) ti ∈ [t1, .., tn] of a large
(N=100000) set of stars using a single-star astrometric model1 for the
expected position of the star at time t:

α∗(t) = α∗
0 + µα∗(t− t0) + Παϖ (1)

δ(t) = δ0 + µδ(t− t0) + Πδϖ

Using Gaia scanning law we also simulate the measurements that Gaia would

perform on our N stars at each t.

ηi(t) = α∗
i (t) sinϕt + δi(t) cosϕt (2)

To a fraction of these stars we add one keplerian companion to
create synthetic binary systems with different orbital characteristics
(a, e, i, P, tp,Ω, ω). The presence of an unseen companion will shift the
barycenter position and thus bias the actual observable (ηobsv

i = position
of the binary photocenter at time ti). This in turn will affect the quality of
the least-squares fit2 to the simulated astrometric observations:
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1
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·
∑
i

(
ηmodl
i − ηobsv

i

σi

)
(3)

For each star in this synthetic dataset we compute a 5-p astrometric
solution (α∗, δ, µ∗

α, µδ, ϖ) along with the corresponding astrometric quality fit
statistics. We use the astrometric quality fit statistics as features to create a
labelled dataset D = {(x⃗1, y1), . . . , (x⃗k, yk)} composed of vectors of features
x⃗i and their corresponding binary target yi (y = 0 single star, y = 1 star with
companion). We can therefore perform supervised learning using different
type of ML classifiers to learn the underlying relation between features x̄i
and target yi.
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Figure 1: Distributions of fit quality parameters coming from the astrometric solution for the simulated systems, color coded by
type of system (single=ORANGE or binary=BLUE), where the effect of the presence of a companion is clearly noticeable.

3 Deep Learning

We choose to perform supervised learning using a Deep Neural Network
consisting of 3 densely connected layers with 64 neurons on each layer.
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Figure 2: (LEFT) Schematic of the actual computation that takes place on ONE neuron of the first hidden layer our Deep Neural
Network when an array of x̄ features is given. The actvation function for the hidden neurons f is a ReLU.(RIGHT) The output
layer of our DNN uses a sigmoid activation function to compute the probability of a star to host a companion.

We use ReLU activation on each hidden neuron, L2 regularization and a
dropout layer to avoid over-fitting. We adopt a 70-30% train-test data split
and train our DNN for 200 epochs. The loss function used during the DNN
training is the binary cross-entropy.

0 50 100 150 200

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L
os

s

Train

Val

0 50 100 150 200

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Train

Val

False True
Predicted label

F
al

se
T

ru
e

A
ct

u
al

la
b

el

1352 68

400 1147

Confusion matrix @0.36

200

400

600

800

1000

1200

Figure 3: (LEFT) Training Loss and precision evolution during the training showing that the network is learning. (RIGHT)
Confusion matrix corresponding to the test dataset showing the True Positives and Negatives along with False Positive and Negatives.
The False Negatives (matrix bottom-left) are higher than the False Positives (matrix top-right), meaning our DNN predictions are
not over-confident.

4 Model Predictions

We can apply the trained deep learning model to existing sources from the
Gaia DR3 catalog and produce predictions of the probability of those stars
to host a companion based on the values of the astrometric quality features
as computed by the model.

Gaia Source Id Star Name RUWE χ2 ϵ p

Gaia DR3 3026325426682637824 Gaia-1 1.052 662.486 0.087 0.877
Gaia DR3 1107980654748582144 Gaia-2 1.634 11564.604 0.199 0.997
Gaia DR3 2125960402948600704 Kepler-1534 1.652 786.902 0.550 1.000
Gaia DR3 2077382707923763328 Kepler-636 1.650 631.953 0.495 1.000
Gaia DR3 2134773160447382656 Kepler-365 1.641 670.894 0.544 1.000
Gaia DR3 5925209583053212800 GJ 676 A 1.641 2251.540 0.230 0.999
Gaia DR3 1107980654748582144 Gaia-2 1.634 11564.604 0.199 0.997
Gaia DR3 2785466581298775680 TOI-1468 1.625 1424.787 0.222 0.998
Gaia DR3 4050522981941484672 MOA-2007-BLG-400L 1.621 337.701 3.026 1.000
Gaia DR3 2135354424139022592 Kepler-1404 1.620 865.599 0.371 1.000
Gaia DR3 5065640460769428224 WASP-72 1.619 2819.416 0.189 0.996
Gaia DR3 4056155333341858304 OGLE-2012-BLG-0406L 1.612 939.444 1.284 1.000

Table 1: Example of model predictions for a small number of existing Gaia DR3 sources known to host exoplanets via other
detection methods. Also included Gaia detected exoplanets via epoch astrometry. The columns correspond to the published
astrometric quality fit statistics (RUWE,astrometric_chi2_al and astrometric_excess_noise) and the model computed probability
to host a companion.

5 On-going Work

At present we are refining the DNN architecture and further calibrating the
model against a set of reference datasets composed of stars belonging to the
Non-Single-Stars Gaia catalog. Once this is completed we will perform large
batch predictions on selected subsets of F,G,K,M stars to identify suitable
candidates for follow-up Radial Velocity observations.

1where (α∗
0, δ0) correspond to a reference position in the tangent observation plane at epoch t0, α∗ = α cos δ, ϕt is position angel of the scan at time t,

Πα,Πδ are the source AL parallax factor components (∂ηα/∂ϖ,∂ηδ/∂ϖ), and ϖ is the source parallax.
2the reduced chi-square metric is used as a goodness-of-fit metric, where ν = Nobservations − 5(degrees of freedom) and σi is the i-th measurement error.


