Three close-in planets with a long-period Saturnmass companion: optimizing RV planet detections

Adam Stevenson ${ }^{1}$, Carole Haswell ${ }^{1}$, John Barnes ${ }^{1}$, Jo Barstow ${ }^{1}$, Matthew Standing ${ }^{2}$
${ }^{1}$ School of Physical Sciences, The Open University, UK; ${ }^{2}$ ESA - European Space Astronomy Centre, Spain.

Multi-planet Systems

-Kepler found that low-mass planets are very common [e.g. Mulders+2018]

- Forward models generating underlying population from Kepler demographics predict far more multiplanet systems than we currently observe (Fig.1) [NASA archive; He, Ford \& Ragozzine 2019]
- We have failed to find most of the planets orbiting bright nearby planet hosts
-Where are the missing planets?

Planets in System

Finding N_{p}

-Difficult to determine how many planets are causing RV modulation

- Sampling, biases, and semi-amplitudes close to instrumental stability make it hard to recover planets
- Instrumental offsets introduce another nuisance parameter - e.g. HARPS fibre upgrade, covid warm-up (colours in Fig.2)
- Requires intensive effort to find small planets in multiple systems

The Past

- Traditionally, RV planet searches recursively compute periodograms, subtracting off Keplerian signals and iterating
-This can find the wrong signals in the case of complex multiplanet systems, and sub-optimal sampling [Barnes+2023]
- False-alarm levels to define significance are not consistent, and requires assumption that noise is uncorrelated
- Aliasing can seriously confuse the ability to manually select periodicities, impacting subsequent signals drastically (Fig.3)

The Future

- Using kima: fits Keplerians simultaneously, sampling from posterior distributions with nested sampling (NS) [Faria+2016]
- NS allows computation of marginalised likelihood (evidence). Ratio of evidences, 'Bayes Factor' (BF) used to compare models varying N_{p}
- AMD stability can be checked for posterior sample acceptance --> can use less restrictive eccentricity priors [Faria+2023]
- Optimal number of planets (BF>150) recovered [Trotta 2008]

HD 28471

- Fig. 4 shows BF>150 for 4 planets
- Long period Saturn-mass planet ($\sim 1470 \mathrm{~d}$), with 3 inner planets with $\boldsymbol{P}=2.9,6.2,8.9 \mathrm{~d}\left(m \sin (i)\right.$ all below $\left.5 \mathrm{M}_{\oplus}\right)$
- Weak evidence (BF~4) for $5^{\text {th }}$ planet on 1.6 d orbit --> need additional data - Kima allows us to get a much clearer picture of system
- Planets close to 1:2:3 resonance --> require precise periods to confirm

So what?

- Systems with multiple (>3) close-in super-Earths and an outer giant are rare - some examples below (Fig.6) [NASA archive]
- Outer planet may be required to perturb small planets inwards
- Many compact multiplanet systems may be missing a companion efficient RV analysis needed where transits less frequent/likely
- Outer planet in HD 28417 more eccentric than others - evidence of Kozai-Lidov style perturbation and on-going evolution?

References

Barnes+ 2023, MNRAS, 524, 5196,
Faria+ 2016, A\&A, 588, A31,
He, Ford \& Ragozzine, 2019, MNRAS, 490, 4575, Faria+ 2023, https://ascl.net/2302.01,
Garlick, M. Background artist image.

