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Overview Magnetospheric structure during CME

Introduction: Trappist-1 is a remarkable stellar system with 7 terres-
trial exoplanets. The central M-dwarf is a flaring star, which likely exerts
a large impact on the space weather surrounding the planets. The ef-
fect of flare-associated coronal mass ejections (CMEs) on the space
environment of exoplanets is an important aspect that can strongly in-
fluence atmospheres, the planets interior energy budget, their magne-
tospheres, if any, and ultimately the habitability of such planets.
Methods: We perform magnetohydrodynamic (MHD) simulations in
which we study the interaction of CMEs with the space environment of e e PSP s .o, e s 2
Trappist-1b and e. We study the interaction of magnetized and non- N O xRd S R
magnetized planets with density-pulse (DP) and fluxrope (FR) CMEs, Figure 2: Planetary magnetosphere with B, = 0.05 G during CME shock crossing (Density pulse).
the magnetic variability at the surface of the planets, and resulting in- Arrows: velocity vectors, contours: thermal pressure, magenta lines: Magnetic field lines.
terior heating.

Results: Magnetic variability in DP CME models is dominated by com-
pression, whereas for FR CMEs the inherent magnetic variability is
transported almost directly to the planet. Time-averaged heating rates Interior ohmic heating during ICME
Qv for FR CMEs are almost constant for all planetary magnetic field [repp o
strengths considered, whereas for DP CMEs, Q,., scale with the plan-
etary magnetic field and increase by 3 orders of magnitude. Above 0.1
G, Q. Saturates for all models and reaches 1 and 10 TW for Tr-1e and
b, respectively. We complement the planetary equilibrium temperature
T, with the Ohmically dissipated heat within the planet and find that
the T., could increase by 15 to 20 K for one CME. We furthermore fina
that most heating occurs in the upstream hemisphere where planetary AT Ih Puls

magnetic field lines are radial. : # - Tr-1b: Fluxrope
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We use the PLUTO ideal MHD code [2]. Intrinsic magnetic field [G] e FR:0.1-10TW

Figure 3: Time—averaged interior Joule heating rates @),,, as
function of planetary magnetic field B,

e Homogeneous sphere

e Conductivity o = 0.01
S/m

e Heating only in low
depths

Average heating rate [W]

e Saturation: B, > 0.1 G

e Planetary magnetic dipole fields B, (0 — 0.15 G),
aligned with planet’s rotation axis

e CME associated with flare energy E;,; = 10°! erg Heating effects and localization

e CME velocity v ~ 2200 km/s, duration: ~ 1 hour Time-averaged dB/dt
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Qavg = / / E-jdVdt [Grayver+2022] g B, [G] Figure 5: Time—averaged magnetic variability
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t — t dB/dt at planetary surface with B, = 0.15 G.

Figure 4:CME heating rate and enhanced Upstream hemisphere is at ¢ < 15?00' High
Figure 1:Interior heating post—processing pipeline. equilibrium temperature, T2, = =L + Q0 dB/dt corresponds to strong heating.
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plotted as a function of B,.

Induced currents and ohmic heating for each mode

e Decomposition of external field into Gauss coefficients

e External field variations induce currents in planetary subsurface Conclusions

e Calculation of time—averaged interior Ohmic heating rates [1] e Magnetic variability at planet is dominated by upstream magnetopause
compression
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Density pulse CMEs carry mostly kinetic energy that compresses B, and
results in strongly variable magnetic field at the planet’s surface
— Strong B,—dependence

Maximum heating rates for strong B,, 1 — 10 TW (Ir-1e and b)

Heating saturates above ~ B, 0.1 G

Most heating at upstream hemisphere, low depths
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