

Assessment of He I triplet absorption at 10830 Å in escaping atmospheres of hot gaseous exoplanets

Anna Taylor¹, Tommi Koskinen¹, Luca Argenti², Nicolas Lewis²

¹The University of Arizona, Lunar and Planetary Laboratory, Tucson, AZ 85721, USA ² The University of Central Florida, Department of Physics, Orlando, FL 32816, USA

annartaylor@arizona.edu

Introduction

Understanding escape is crucial for exoplanet:

- Demographics and habitability
- Chemical/physical atmospheric processes
- Host star interactions [1]
- He I 10830 Å line has been detected on many Hot Jupiters \circ Lower level is He metastable (2³S) state • Half-life of ~7800 seconds [2] • Can be observed from the ground
- Proven difficult to interpret

Parker wind models used to interpret transit depths [3,4]

- Models are typically isothermal
- Sub-solar He/H ratios used to fit data [3]

Results

Temperature and Bulk Velocity vs. radius

- Temperature peaks at ~9000 K at r/R_p ~ 1.7
- Velocity is ~11000 m/s at top of atmosphere

Many models in the literature are using outdated rate coefficients that are updated in this work

We present an updated model of He I (2³S) transit depth Investigate HD209458b - will apply to other systems • Updated excitation/de-excitation reaction rates • Include photoelectrons which are the most important production rate in Earth's atmosphere

- Using escape model that is multi-species [5]
- Including modeling for the H I Balmer lines

We successfully fit the He I 10830 Å transit depth with solar He/H ratios, a solar minimum spectra and updated excitation chemistry which we compare to previous excitation chemistry [3, 9, 10]

Μ	lod	le

Low	er/Mi	ddle
Atmos	phere	Mode

• Use established lower/middle atmosphere model [6]

Transit Spectra Radiative Transfer Model \circ Use P, T, and ρ profile from the lower/middle

Ο

Ο

Listaping atmosphere	
	Image cr
	• -

Hel (2³S) Chemistry

Name	Formula				
Recombination	$He^+ + e^- \rightarrow He(2^3S)$				
otoelectron Collisions	$He(1^1S) + e^* \rightarrow He(2^3S)$				
Electron Collisions	$He(1^1S) + e^- \rightarrow He(2^3S) + e^-$				
Penning Ionization	$He(2^{3}S) + H \rightarrow He(1^{1}S) + H^{+} + e$				
Electron Collisions	$He(2^{3}S) + e^{-} \rightarrow He(2^{1}S) + e^{-}$				
Photoionization	$He(2^{3}S) + h\nu \rightarrow He^{+} + e^{-}$				
Radiative Decay	$He(2^3S) \rightarrow He(1^1S)$				
Electron Collisions	$He(2^{3}S) + e^{-} \rightarrow He(2^{1}P) + e^{-}$				
ectron De-excitation	$He(2^{3}S) + e^{-} \rightarrow He(1^{1}S) + e^{-}$				
roton De-excitation	$He(2^{3}S) + H^{+} \rightarrow He(1^{1}S) + H^{+}$				
= Not included in other exoplanet studies, = Updated					
Excitation/De-excitation reaction rates in					
previous models need revisions					
0 ⁻¹¹ Oklopčić et al. (2 Lampòn et al. (2 Verner & Ferland	 2018) 2020) d (1996) O Differ significantly 				
Previo	o We use a sum of Verner & Ferland				

Reaction Rates vs. radius

edit: ESA/NASA

- Recombination dominates production as expected
- \circ Penning Ionization dominates loss r/R_p < 1.5
- \circ Collisional Excitation dominates loss 1.5 < r/R_D < 3.25
- \circ Photoionization dominates loss r/R_p > 3.25

Number Density of major species vs. radius

• Updated reaction rates affects the density of He I (2^3 S)

- isothermal and H/He ratio assumptions [3, 4, 10]
- We also agree with data for the H I Balmer line [7]

 e⁻ collisional de-excitation, ionization, and <i>ℓ</i>-mixing p⁺ collisional <i>ℓ</i>-mixing Three-body recombination Photoionization 	Implementation Implementation 2000 4000 6000 8000 10000 These changes to the reaction rates significantly reduce the He I (2 ³ S) population	-1.5 Our Model Observations [7] 6561 6563 6565 6567 10828 10829 10830 10831 10832 Wavelength (Å) Wavelength (Å)
Re	ferences	Acknowledgments
 [1] France, K., et al., 2022. Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution mission: motivation and overview. J. Astron. Telesc. Instrum. Syst., 8, 014006. [2] Drake, G. W. F. 1971. Theory of Relativistic Magnetic Dipole Transitions: Lifetime of the Metastable 2³S State of the Heliumlike Ions PhRvA, 3, 908 [3] Lampón, M., et al., 2020. Modelling the He I triplet absorption at 10830 Å in the atmosphere of HD 209458 b, Astronomy and Astrophysics, 647. [4] F. J. Alonso-Floriano et al. 2019, He I λ 10830 Å in the transmission spectrum of HD 209458 b. A&A, 629, A110 [5] Koskinen, T. T., et al., 2022. Mass loss by atmospheric escape from extremely close-in planets. Astrophys. J., 929, 52 [6] Lavvas, P., Arfaux, A., 2021. Impact of photochemical hazes and gases on exoplanet atmospheric thermal structure. MNRAS, 502, 5643–5657. [7] Jensen, A. G. et al. 2017, A Detection of Hα in an Exoplanetary Exosphere", The Astrophysical Journal, 751, 86. [8] Huang, C., et al. 2017, A Model of the Hα and Na Transmission Spectrum of HD 189733b, The Astrophysical Journal, 851(2), 150. [9] Oklopcic, A., Hirata, C. M., 2018. A new window into escaping exoplanet atmospheres: 10830 A° line of helium. Astrophys. J. Lett., 855, L11. [10] Dos Santos, L. A., Vidotto, A. A., Vissapragada, S., Alam, M. K., Allart, R., Bourrier, V., Kirk, J., Seidel, J. V., Ehrenreich, D. 2022, "p-winds: An open-source Python code to model planetary outflows and upper atmospheres," A&A, 659, A62 		I would like to thank Peter Stephenson and Zarah Brown for their helpful comments on my poster. We acknowledge the use of the hydrogen scattering model from [8]. I would finally like to thank my advisor Tommi Koskinen for his help and guidance. This research was supported by NASA/XRP 80NSSC23K0260.