

cecilia: A Machine Learning Pipeline for Measuring Metal Abundances in Polluted White Dwarfs

Mariona Badenas-Agusti (mbadenas@mit.edu; MIT), Andrew Vanderburg (MIT), Javier Viaña (MIT), Patrick Dufour (Université de Montréal), Simon Blouin (University of Victoria), Siyi Xu (Gemini/NOIRLab), Lizhou Sha (University of Wisconsin-Madison), Kishalay De (MIT), Susana Hoyos (MIT)

Motivation

Many white dwarfs are "polluted" with icy or rocky material from their progenitor's planetary systems^{1,2} (**Fig. 1**). Spectroscopic observations of these polluted white dwarfs provide valuable insights into the geology and chemistry of exoplanetary bodies. However, current spectral analysis techniques (**Fig. 2**) of these stellar remnants involve manual, time-intensive, and iterative work, as well as substantial computational resources and proprietary atmospheric models.^{3,4,5,6} These limitations make it difficult to perform large scale population stories of polluted while dwarfs (**Fig. 2**) spectral models.^{3,4,5,6} These limitations make it difficult to perform large scale population stories of polluted while dwarfs therefore hindering our understanding of the properties of their accreted material. Here we present **cecilia**, a machine-learning (**ML**) spectral modeling

V

code^{7,8} designed to measure chemical abundances in polluted white dwarfs.

Methodology

Target: Helium-dominated WDs with $10,000 \le T_{eff} \le 20,000$ K.

Parameters: 27 stellar "labels" (T_{eff}, log(g), 11 elemental abundances^{*} relative to He; 14 elemental abundances[†] scaled to chondritic values) + Spectrum-specific parameters (RV shift, jitter).

ML Architecture: 1 Autoencoder + 2 Fully Connected Neural Networks. End-to-End Training: 3 weeks (windows of 200Å).

Training Data: About 23,000 labels with their corresponding highresolution (R~50,000) atmosphere models.^{3,5,6}

Optimization: Multi-observation fit of ML-interpolated model spectra to data via non-linear Least Squares Regression (mpfit) and a

Bayesian MCMC (edmcmc).

* H, Œa, Mǥ, Fe, O, Ფi, Ti, Be, Cr, Mn, ℕi ▼ [†]C,▼N, Li, Na,▼Al, P, S, Cl, Ar, K, Sc, V, Co, €u ▼

Results

- Efficiency of neural-network-powdered interpolation allows for fast generation of polluted white dwarf atmosphere models (<< 1 sec, 1 GPU).
- Sensitivity study of synthetic and real data yields an accuracy (≤ 0.15 dex) similar to that of conventional methods for up to 10 metals (Fig. 3).
- Performed the first ML-based compositional study of 5 previously unstudied He-rich polluted white dwarfs with SDSS and Keck spectra (**Fig. 4**).
- One of these WDs may have accreted an O-rich chondritic body, with

potential Si and Fe depletion. Need (UV) data to refine composition (Fig. 5).	Polluted WD (Steady-State) (Badenas-Agusti, in prep.)	CI Chondrites (Alexander+2019a,b)	Comet Halley (Jessberger+1988)
Sonclusions		References	
 cecilia leverages ML to rapidly generate atmosphere models of polluted white dwarfs (« 1 sec) and accurately (\$0.15 dex) measure up to 10 metal abundances from real spectroscopic observations. Combined with upcoming data from massive multiplexed spectroscopic surveys (e.g. DESI, SDSS-V, 4MOST, WEAVE), cecilia can help unlock large studies of white dwarf pollution, hence paving the way to a statistical understanding of extrasolar geochemistry. 		 [1] Jura 2003, ApJ [2] Jura & Young 2014, Annu Rev Earth Planet Sci, 42 [3] Dufour+2007, ApJ, 663, 1291 [4] Koester 2010, Sait, 81, 921 [5] Blouin+2018a, ApJ, 863, 184 [6] Blouin+2018b, ApJ, 867, 161 [7] Ting+2019, ApJ, 879, 2 	