The JWST NIRSpec G395H spectroscopic phase curve of the ultra-short period Super-Earth K2-141 b

Amélie Gressier¹, Néstor Espinoza¹ and the GO 2159 team

¹ Space Telescope Science Institute

STScI | SPACE TELESCOPE | SCIENCE INSTITUTE

Ultra-short period rocky planets (P<1 day, $R_p < 2R_{\oplus}$), thought to be the exposed cores of mini-Neptunes, offer a unique opportunity to study planet formation and atmospheric diversity, revealing potentially exotic compositions due to intense stellar irradiation. We present the **JWST NIRSpec G395H spectroscopic phase curve** of the ultra-short period (P = 6.9-hour; T_{eq} = 2150 K) **transiting super-Earth K2-141 b** (R_p = 1.51 R_{\oplus} , M_p = 5.08 M_{\oplus}), observed on July 5, 2023, as part of the GO program 2159 (PI: N. Espinoza).

K2-141 b: A Benchmark for JWST Observations of Highly Irradiated Atmospheres

K2-141 b^[1,2] orbits a relatively bright K-dwarf star and is among the highly irradiated ultra-short period rocky planets observable by JWST. With a 6.9-hour orbital period and high signal-to-noise ratio, it is an excellent target for phase-curve observations to characterize its atmosphere^[4]. Previous observations with the Kepler spacecraft^[1] and Spitzer^[5] indicated ambiguities between reflected and thermal radiation. Using **JWST NIRSpec G395H**, we have obtained an **infrared full phase-curve of K2-141** b, enabling us to determine if it has a thin or thick atmosphere and to constrain its macrophysical properties with unprecedented precision. These observations help identify potential SiO2-rich atmospheric components and resolve the nature of K2-141 b's atmosphere.

Data reduction and analysis

We performed the data reduction on the JWST NIRSpec G395H transit, eclipse, and full-phase curve observations using transitspectroscopy^{[6].} We followed standard JWST pipeline steps and incorporated a custom jump detection algorithm. Spectral extraction used a simple box extraction of 6 pixels centered around the trace. White light curves and pixel-level light curves were generated from the time series of 1D stellar spectra for both detectors. The eclipse and transit WLCs from NRS1 and NRS2 were fitted independently using juliet^{[7].} The period was fixed to 0.2803244 days^{[8],} but we fitted for the mid-transit, rp/rs, a/rs, b, q1, q2 (quadratic law), and out-of-transit baseline flux for the transit. We fit both eclipses jointly with the orbital parameters fixed to the best-fit transit values. Correlated noise was detrended with time and FWHM, fitting for coefficients of the linear model. The spectral light curves fits use a similar detrending model.

Emission spectrum

- → The spectral eclipse depth values are fitted uniformly, allowing for negative values to avoid biasing the results.
- → The spectral fit is performed at R100 and then binned to R30.
- → Emission values increase as expected for redder wavelengths.
- → Results are consistent with Spitzer observations.
- → Values are slightly lower than a blackbody with full redistribution, suggesting a non-zero albedo.

0 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 Wavelength (μm)

Sneak Peek at the Transmission Spectrum

- → The spectral fit is performed at R100 and then binned to R30.
- → Quadratic LDC are fitted uniformly between [0, 1] for each bin
- → No obvious features are identified

K2-141 b Phase curves modelling

- → We fit the full phase curves from NRS1 and NRS2 independently using the same detrending model, which includes a linear polynomial in time and FWHM.
- → The phase curve was modeled using the batman^[9] package and a sinusoidal model:
- → We fit for Fs, rp/rs, fp/fs, offset, amplitude, q1, q2, coefficients of detrending model

Results

- → We find consistent transit values between detectors, i.e., 491+/-50 and 534+/-41 ppm.
- → The eclipse depth value is 75+/-15 ppm for

Wavelength (μ m)

References

[1] Malavolta et al. 2017
[2] Barragàn et al. 2018
[3] Nguyen et al., 2020
[4] Zieba et al. 2022
[5] Rustamkulov et al 2023

[6] Espinoza et al. 2019 a
[7] Espinoza et al. 2018
[8] Bonomo et al. 2023
[9] Kreidberg et al. 2015

NRS1 and 136+/-31 ppm for NRS2

→ The phase offset is found to be nonconsistent with zero for NRS1, contrary to NRS2, which might be due to remaining correlated noise with the observed time ramp in NRS1.

Amélie Gressier (STScl) Post Doctoral Researcher Science Mission Office agressier@stsci.edu https://agressier.github.io www.linkedin.com/in/amelie-gressier

Want to know more about detecting atmospheres around rocky planets orbiting M-dwarfs using MIRI photometry ? Check out the Hot-Rocks survey (PI: H. Diamond-Lowe)

