# *ETH zürich* Unravelling the atmospheres of rocky planets with real gas equations of state and solubility

COPL Planet S National Control of Competence in Research

Swiss National Science Foundation

Confederazione Svizzera

Confederaziun svizra

D.J. Bower<sup>1</sup>, M. A. Thompson<sup>1</sup>, K. Hakim<sup>2,3</sup>, M. Tian<sup>4</sup>, and P. A. Sossi<sup>1</sup> <sup>1</sup>Institute of Geochemistry and Petrology, ETH Zürich, Zürich, Switzerland

<sup>2</sup> KU Leuven, Leuven, Belgium <sup>3</sup> Royal Observatory of Belgium, Brussels, Belgium

<sup>4</sup> University Observatory, LMU Münich, Münich, Germany



### Introduction and Motivation

- Formation of rocky planets involved stages of melting through radioactive decay and planetary impacts, generating atmospheres
- Moreover, a new class of planet, sub-Neptunes, observable by James Webb Space Telescope (e.g., Madhusudhan et al. 2023) are likely to have a magma-atmosphere or water-atmosphere interface
- In order to better i) understand the generation of atmospheres around rocky Solar System bodies and ii) interpret observations of atmospheric spectra of rocky- and sub-Neptune exoplanets, we develop a new code, *Atmodeller*, of the solubilities of major gases (H-C-O-N-S-CI) in silicate magmas, their equilibrium speciation and non-ideality, as well as their condensation from the gas phase.

## **Methods**

- Atmodeller runs in Python 3.10+, has object-oriented design, full logging, benchmarked with FactSage, ~100 tests
   Users able to select elements of interest (H, C, S, etc.)
- Can specify either partial pressures of discrete gas species
- (e.g., O<sub>2</sub>, H<sub>2</sub>) or total mass of elements.
  Number of independent chemical reactions required to solve
- system determined automatically by Gaussian elimination
  Planetary mass, radius, fraction of melt, and temperature
- Planetary mass, radius, fraction of meit, and temperature selected independently
- Solubility laws implemented from a variety of temperatures, melt compositions and fO<sub>2</sub> (see Table 1, below)
- Non-ideal gas equations of state using Compensated Redlich-Kwong (Holland and Powell, 1991; 1998) and Virial coefficients (Shi and Saxena, 1992)

| Species          | Composition*              | Reference                         | Experimental Calibration <sup>†</sup> |                    |                                          |
|------------------|---------------------------|-----------------------------------|---------------------------------------|--------------------|------------------------------------------|
|                  |                           |                                   | Pressure<br>(kbar)                    | Temperature<br>(K) | fO <sub>2</sub> rel. IW<br>(log10 units) |
|                  |                           |                                   |                                       |                    |                                          |
| $H_2$            | Silicate glass (obsidian) | Gaillard et al. (2003, Table 4)   | 0.001 - 0.265                         | 1073               | -3.6 to 0.6                              |
| He               | Basalt (tholeiitic)       | Jambon et al. (1986)              | 0.001                                 | 1523-1873          | 8                                        |
| H <sub>2</sub> O | Basalt                    | Dixon et al. (1995, Fig. 4)       | 0.2-0.7                               | 1473               | 4.2 to 5.5                               |
| H <sub>2</sub> O | Peridotite                | Sossi et al. (2023)               | 0.001                                 | 2173               | -1.9 to 6.0                              |
| H <sub>2</sub> O | Basalt                    | Wilson & Head III (1981) and      | 1-6                                   | 1373               | 2.2, 3.8, 9.5                            |
|                  |                           | Hamilton et al. (1964)            |                                       |                    |                                          |
| $H_2O$           | Lunar basalt, AnoDio.     | Newcombe et al. (2017, Fig. 5)    | 0.001                                 | 1623               | -3.0 to 4.8                              |
| CO               | Basalt, Rhyolite          | Yoshioka et al. (2019)            | 2-30                                  | 1473-1773          | 0.5 to 4.0                               |
| CO               | Basalt                    | Armstrong et al. (2015, Eq. 10)   | 10-12                                 | 1673               | -3.65 to 1.46                            |
| CO <sub>2</sub>  | Basalt                    | Dixon et al. (1995, Eq. 6)        | 0.21-0.98                             | 1473               | 4.2 to 5.5                               |
| CH4              | Basalt (Fe-free)          | Ardia et al. (2013, Eq. 7a and 8) | 7-30                                  | 1673-1723          | -9.50 to -1.36                           |
| N <sub>2</sub>   | Basalt (tholeiitic)       | Libourel et al. (2003, Eq. 23)    | 0.001                                 | 1673-1698          | -8.3 to 8.7                              |
| N <sub>2</sub>   | Basalt                    | Dasgupta et al. (2022)            | 0.001-82                              | 1323-2600          | -8.3 to 8.7                              |
| N <sub>2</sub>   | Basalt                    | Bernadou et al. (2021)            | 0.8-10                                | 1473-1573          | -4.7 to 4.9                              |
| S21              | Basalt, Andesite          | Boulliung & Wood (2022, 2023)     | 0.001                                 | 1473-1773          | -0.14 to 10.8                            |
| S <sub>2</sub>   | Mafic silicate melts      | Namur et al. (2016, Eq. 10)       | 0.001-40                              | 1473-2023          | -9.4 to -1.5                             |
| Cl <sub>2</sub>  | Basalt, AnoDioFor.        | Thomas & Wood (2021, Fig. 4)      | 15                                    | 1673               | 2.05                                     |

**Tab. 1.** Compilation of experimental work used to derive solubility laws in atmodeller. Most are fit to an equation of the general form:

#### $X_i = \alpha f_i^{\beta}$

where X is the mole fraction and f is the fugacity of species i, a is the solubility constant and  $\beta$  the stoichiometric coefficient.

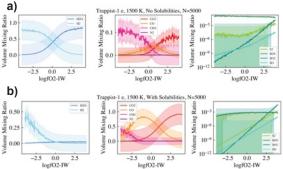



Fig. 2. Results of Monte Carlo simulations (n = 5000) of atmospheres around a TRAPPIST-1e/ Earth-like planet at 1500 K with a range of H/C ratios (0.1 - 10), ocean masses of H (1 - 10) and fO<sub>2</sub> (-4 to +4 relative to the iron-wüstite, IW, buffer) for **a**) no solubilities for **a**ll species included.

## Implications

- Terrestrial planets may store much (>99 %) water in their interiors
- Non-detections of atmospheres around TRAPPIST-1 planets (e.g., Greene et al. 2023) do not necessarily mean they are dry or do not support liquid oceans
- SO<sub>2</sub> can become a major component of terrestrial planet atmospheres and could be diagnostic of oxidised, Earth-like planets
- Sub-Neptune atmospheres have lower total pressures than predicted from ideal gas EoS, but have higher H<sub>2</sub>O mixing ratios
- Significant amounts of H<sub>2</sub> and H<sub>2</sub>O could be dissolved in their interiors, thereby affecting their mass/radius characteristics
- Provides a means of testing the Hycean worlds paradigm (e.g., Madhusudhan et al. 2023; Shorttle et al. 2024; Wogan et al. 2024).

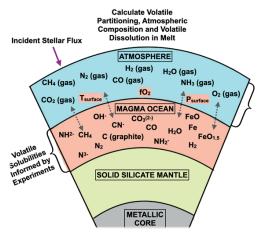
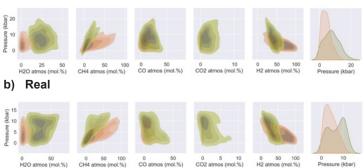



Fig. Schematic 1. illustration of the processes covered in Atmodeller. The code self-consistently treats mass balance. chemical equilibria, solubility, condensation and non-ideal gas equations of state to calculate the composition the atmosphere in of equilibrium with the magma oceans for a range of temperatures, planetary masses and melt fractions.

## Results


#### Terrestrial planets

- Solubilities of major gas species decrease in the order  $H_2O < CO_2 < H_2 < CO$
- Atmospheres produced from bulk silicate Earth-like compositions are C-rich at high temperatures (cf. Bower et al. 2022; Sossi et al. 2023), or H<sub>2</sub>-rich at very low fO<sub>2</sub> (<IW-3; Fig. 3)</li>
- Higher pressures/low temperatures favour formation of associated gas species (NH<sub>3</sub>, CH<sub>4</sub>)

#### Sub-Neptunes

- May be characterised by H<sub>2</sub>, H<sub>2</sub>O, CO or CH<sub>4</sub> as major species, depending on fO<sub>2</sub> and C/H ratio (Fig. 4)
- Accounting for real gas behaviour reduces total pressure of atmospheres (<14 kbar) compared to ideal cases (<21 kbar)</li>
- Results from increase in fugacity coefficients  $(\phi)$  of all gases with increasing pressure
- H<sub>2</sub>O more abundant as increase in φ is lower relative to H<sub>2</sub>

#### a) Ideal



**Fig. 3**. Results of Monte Carlo simulations (n = 1000) of atmospheres in the C-O-H system around a K2-18b/sub-Neptune-like planet for melt fraction = 0.1 of total mass at 2000 K with C/H ratios (0.05 - 3.25), ocean masses of H (1 - 3500) and  $fO_2$  (-5 to 0 relative to the IW buffer) for **a**) ideal gases and **b**) real gas equations of state.



Please visit us at: https://github.com/ExPlanetology

C ExPlanetology