ESA PLATO Mission: Data access and community involvement

A. M. Heras¹, H. Rauer², J. M. Mas-Hesse³, I. Pagano⁴, C. Aerts⁵, M. Deleuil⁶, L. Gizon⁷, M.J. Goupil⁸, H. Osborn⁹, G. Piotto¹⁰, D. Pollacco¹¹, R. Ragazzoni^{10,12}, G. Ramsay¹³, S. Udry¹⁴, and the PLATO Team^{*}

plato

A CONTRACTOR OF A CONTRACTOR OF

¹ESA/ESTEC, ²DLR, ³Centro de Astrobiología (CSIC/INTA), ⁴ INAF-Osservatorio Astrofisico di Catania, ⁵KU Leuven, ⁶Laboratoire d'Astrophysique de Marseille, ⁷Max-Planck-Institut für Sonnensystemforschung, ⁸LESIA/Observatoire de Paris, ⁹University of Bern, ¹⁰Università degli Studi di Padova, ¹¹University of Warwick, ¹²INAF, ¹³Armagh Observatory and Planetarium, ¹⁴Observatoire de Genève

*<u>https://platomission.com, https://www.cosmos.esa.int/web/plato</u>

PLATO (PLAnetary Transits and Oscillations of stars) is the third medium class mission (M3) in ESA's Cosmic Vision programme. PLATO's main objective is the study of down to Earth-size planets orbiting up to the habitable-zone of Sun-like stars.

PLATO will use the transit method for the detection and characterisation of exoplanets, combined with the asteroseismic analysis of the planet host stars. PLATO's core observing sample will consist of bright Sun-like stars of $m_V < 11$, which will enable us to determine with unprecedented accuracy stellar ages and the bulk properties of small planets, including their masses from radial velocity measurements at ground-based observatories.

For statistical studies, PLATO will also monitor a large sample of Sun-like stars with $m_v < 13$ and a sample of cool late-type dwarfs with $m_v < 16$, along with a small sample of bright stars distributed over the HR diagram observed in two colour bands.

The launch of PLATO is planned for end 2026. The nominal duration of the mission is 4.25 years, with consumables available for 8.5 years.

FIRST PLATO LONG POINTING FIELD "LOPS2" (> 2 years)

- The four blue shades, from dark to light, map regions observed with 24, 18, 12, 6 cameras (corresponding to four, three, two, and one group(s) of six co-pointing telescopes each, respectively).
- The pink circle marks the contour of the |β| > 63° technical requirement for the centre of the LOP fields ("allowed region").
- The green circle represents the |β| > 70° condition for the centres of fields that are independent on the initial rotation angle of the spacecraft.
- The yellow circle represents the TESS continuous viewing zone, with the Large Magellanic Cloud indicated in red.

STELLAR SAMPLES REQUIREMENTS

(for two long duration pointings)

		Core sample		Statistical sample		Colour sample
		Sample 1	Sample 2	Sample 4	Sample 5	
Stars		≥ 15,000 (goal 20000)	≥ 1,000	≥ 5,000	≥ 245,000	300
Spectral type	Spectral type		Dwarf and subgiants F5-K7	Cool late type dwarfs	Dwarf and subgiants F5-K	Anywhere in the HR diagram
Limit m _v	Limit m _v		8.5	16	13	-
Random noise	Random noise (ppm in 1 hour)		≤ 50	-	-	-
Observation sampling times	Imagettes	25 s	25 s 2.5 s for a subsample	25 s for > 5,000 targets	25 s for > 9,000 targets	2.5 s
	Light-curves	-	-	-	≤ 600 s	-
	Centroid measurements	-	-	-	≤ 50 s for 5% of targets	-
	Transit oversampling	-	-	-	≤ 50 s for 10% of targets	-
Wavelength		500-1000 nm				Red and blue spectral bands

STELLAR SAMPLES AND OTHER PLATO TARGETS

. .

Assuming 2 pointings

Statistical sample > 245 000 dwarf and subgiant stars V < 13 mag V < 16 mag for M stars

Prime sample

Up to 20,000 high-precision targets

Ground-based Observation

DATA PRODUCTS

Level-0 Level-1

Level-2 Level-3

GUEST OBSERVER PROGRAMME

ESA will issue calls for proposals for complementary science programmes, focused on topics not covered by the PLATO core science objectives (as described in the Science Management Plan)

The first call will be issued <u>nine months before launch</u>

More open calls will be issued during the mission (once per year, TBC)

Proposals can include PIC targets but not Prime Sample targets

Allocated time: Over the mission lifetime, an average of 8% of the science data rate (excluding calibration data)

Proposals on targets of opportunity possible, but they will be executed on a best effort basis

Proprietary period: One year, starting at the time of the delivery to the observer of the last portion of the relative

DATA RELEASES

Leve	el-0, Level-1 and Level-2 relea every three months	ased	Level-3
	Statistical sample		Drimo
	 Q1 data released Q1 + 9 months Qn data released Qn + 6 months 		sample
			When ground- based
	Prime sample		are complete
	 Q1 data released Q1 + 1.5 years Qn data released Qn + 1.25 years 		

Level-1 data

PLATO MISSION CONSORTIUM (PMC) – HOW TO JOIN

PLATO is a joint development by ESA and the PMC.

PMC contributions:

- Science Payload
- Ground segment:
 - PLATO Science Management (including the GOP) How to join —
 - PLATO Data Center
 - Calibration& Operation
 - Science Performance Monitoring

GROUND-BASED OBSERVATIONS PROGRAMME (GOP)

- The GOP Team organises and executes the ground-based follow-up of the planet candidates of the Prime sample as specified in the Science Management Plan.
- The GOP Team will also organise the follow-up of other planetary candidates in the framework of the PLATO Mission Consortium science activities
- More information on tasks and work packages:

